Molecular dynamics simulations of sarcin–ricin rRNA motif

نویسندگان

  • Nad'a Špačková
  • Jiří Šponer
چکیده

Explicit solvent molecular dynamics (MD) simulations were carried out for sarcin-ricin domain (SRD) motifs from 23S (Escherichia coli) and 28S (rat) rRNAs. The SRD motif consists of GAGA tetraloop, G-bulged cross-strand A-stack, flexible region and duplex part. Detailed analysis of the overall dynamics, base pairing, hydration, cation binding and other SRD features is presented. The SRD is surprisingly static in multiple 25 ns long simulations and lacks any non-local motions, with root mean square deviation (r.m.s.d.) values between averaged MD and high-resolution X-ray structures of 1-1.4 A. Modest dynamics is observed in the tetraloop, namely, rotation of adenine in its apex and subtle reversible shift of the tetraloop with respect to the adjacent base pair. The deformed flexible region in low-resolution rat X-ray structure is repaired by simulations. The simulations reveal few backbone flips, which do not affect positions of bases and do not indicate a force field imbalance. Non-Watson-Crick base pairs are rigid and mediated by long-residency water molecules while there are several modest cation-binding sites around SRD. In summary, SRD is an unusually stiff rRNA building block. Its intrinsic structural and dynamical signatures seen in simulations are strikingly distinct from other rRNA motifs such as Loop E and Kink-turns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling RNA tertiary structure motifs by graph-grammars

A new approach, graph-grammars, to encode RNA tertiary structure patterns is introduced and exemplified with the classical sarcin-ricin motif. The sarcin-ricin motif is found in the stem of the crucial ribosomal loop E (also referred to as the sarcin-ricin loop), which is sensitive to the alpha-sarcin and ricin toxins. Here, we generate a graph-grammar for the sarcin-ricin motif and apply it to...

متن کامل

Ribotoxic Stress Response: Activation of the Stress-Activated Protein Kinase JNK1 by Inhibitors of the Peptidyl Transferase Reaction and by Sequence-Specific RNA Damage to the a-Sarcin/Ricin Loop in the 28S rRNA

alpha-sarcin/ricin loop in the 28S rRNA. and by sequence-specific RNA damage to the inhibitors of the peptidyl transferase reaction stress-activated protein kinase JNK1 by Ribotoxic stress response: activation of the

متن کامل

Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2

Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (R...

متن کامل

Interaction of the sarcin/ricin domain of 23 S ribosomal RNA with proteins L3 and L6.

We investigated interaction of an RNA domain covering the target site of alpha-sarcin and ricin (sarcin/ricin domain) of Escherichia coli 23 S rRNA with ribosomal proteins. RNA fragments comprising residues 2630-2788 (Tox-1) and residues 2640-2774 (Tox-2) of 23 S rRNA were transcribed in vitro and used to analyze the binding proteins by gel shift and filter binding. Protein L6 bound to both Tox...

متن کامل

Cleavage of the sarcin–ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding

Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin alpha-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin-ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006